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Using Principal Components of Genetic Variation
for Robust and Powerful Detection of Gene-Gene
Interactions in Case-Control and Case-Only Studies

Samsiddhi Bhattacharjee,1 Zhaoming Wang,2 Julia Ciampa,1 Peter Kraft,3 Stephen Chanock,4 Kai Yu,1

and Nilanjan Chatterjee1,*

Many popular methods for exploring gene-gene interactions, including the case-only approach, rely on the key assumption that phys-

ically distant loci are in linkage equilibrium in the underlying population. These methods utilize the presence of correlation between

unlinked loci in a disease-enriched sample as evidence of interactions among the loci in the etiology of the disease. We use data

from the CGEMS case-control genome-wide association study of breast cancer to demonstrate empirically that the case-only and related

methods have the potential to create large-scale false positives because of the presence of population stratification (PS) that creates long-

range linkage disequilibrium in the genome. We show that the bias can be removed by considering parametric and nonparametric

methods that assume gene-gene independence between unlinked loci, not in the entire population, but only conditional on population

substructure that can be uncovered based on the principal components of a suitably large panel of PS markers. Applications in the

CGEMS study as well as simulated data show that the proposed methods are robust to the presence of population stratification and

are yet much more powerful, relative to standard logistic regression methods that are also commonly used as robust alternatives to

the case-only type methods.
Introduction

The completion of the Human Genome Project and

rapid advancement of genotyping technologies have now

given rise to much interest in genome-wide association

studies (GWAS). Standard analysis of GWAS often explores

disease-gene association one locus at a time. Although this

approach has already led to the successful mapping of

more than 400 novel susceptibility regions for various

chronic diseases and quantitative traits, it is recognized

that, in the future, researchers will need to explore gene-

gene (G-G) interactions to obtain a more complete depic-

tion of the genetic basis of these traits. In particular,

studying interactions among genetic markers can lead to

the discovery of new disease-associated loci, a better under-

standing of the biology of the existing susceptibility

regions, and more accurate models for individual risk

prediction.1

Case-control designs are now widely used for conducting

association scans for complex diseases that are relatively

rare, such as cancers and diabetes. Many popular

methods2–7 for the analysis of case-control data assume

that physically distant loci in the genome are in linkage

equilibrium (LE) and thus that their genotypes are distrib-

uted independently of each other in the underlying

population. These methods explore interactions among

unlinked loci in the etiology of the disease by searching

for evidence of correlation among them in the disease-

enriched case-control sample. In particular, it has been
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noted that the interaction odds ratio between two markers

on the risk of a disease can be estimated by the correlation

odds ratio between the same markers in the cases alone.2,3

Moreover, such a case-only test of interaction can be far

more powerful than the corresponding test for interaction

that could be obtained from the classical prospective anal-

ysis of case-control data. Prospective logistic regression

essentially requires contrasting the estimate of the correla-

tion odds ratio between the markers in the cases with that

in the controls. The case-only method constrains the corre-

lation between the markers in the controls to be zero, its

assumed value in the population assuming a rare disease,

and thus gains efficiency by not incurring additional vari-

ability because of the estimation of the additional correla-

tion parameter among the controls.

In this article, we study the impact of population strati-

fication (PS) in the case-only and related retrospective

analysis methods for exploring gene-gene interactions in

large-scale association studies. In the presence of a hidden

ethnic substructure, it is likely that there will exist groups

of loci across the genome for which the frequencies of

the variants covary along the strata, causing those variants

to be in linkage disequilibrium (LD) in the population as

a whole. Thus, in such a setting, the case-only type

methods could falsely detect the LD or correlation between

two unlinked markers as evidence of interaction between

the markers on the risk of the disease. The nature of such

bias that could arise due to PS in the case-only type

methods is quite different from the confounding bias
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Figure 1. Genome-wide Scan for Interactions in CGEMS Breast
Cancer Data
q-q plots of (� log10 transformed) p values for tests of gene-gene
interaction between rs2322659 in LCT gene (chr 2) and 472786
SNPs from remaining 21 autosomes. The five different methods
implemented are PL (black line), the standard prospective logistic
regression method (adjusted for significant PCs); CO (light blue
line), the standard case-only method; CO-ADJ (red line), proposed
adjusted case-only method; CC-CLR (dark blue line), standard
conditional logistic regression with case-control matching; CC-
CCL (orange line), proposed constrained conditional logistic
method with case-control matching; and NN-HCL (green line),
proposed hybrid conditional logistic method with nearest-neigh-
bor matching. Genomic control inflation factor (IF) is shown for
each analysis.
that has been widely studied in the context of case-control

studies of genetic main effects. Confounding bias can

arise only if both gene frequencies and disease rates vary

in the same direction across the underlying ethnic strata.

In contrast, the bias in the case-only type methods result-

ing from the violation of the gene-gene independence

assumption could arise merely because of the existence

of underlying strata by which the frequencies of certain

genes covary.

In Figure 1, we use data from the CGEMS study8,9 of

breast cancer to display a q-q plot for alternative tests for

interactions between a SNP (rs2322659) in LCT, a gene

region in Chr 2 that is well known to be under the effect

of population stratification,10,11 and 472,786 SNPs from

21 other chromosomes. It can be noted that the case-

only method (light blue dots) produces a highly excess

number of smaller p values than expected by chance (diag-

onal line) or that produced by the more robust case-control

comparison based on the standard logistic regression anal-

ysis (black dots). Given that it is very unlikely that the LCT

gene has any relationship with the risk of breast cancer, by

itself or by interaction with other SNPs in the genome, it is

fairly evident that the case-only method has a severe bias

resulting from the presence of many loci across the
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genome that are correlated with the LCT locus simply

because of the existence of hidden population stratifica-

tion. We believe that such a problem could be ubiquitous

in any large-scale exploration of interactions, where it is

easy to come across pairs or larger groups of unlinked

markers, the frequencies of which covary across the under-

lying strata.

Principal component analysis (PCA) of genome-wide

panels of PS markers12 has become a widely popular

method for examining evidence of population stratifica-

tion in association studies. PCA is a general statistical

method for transforming a vector of covariates into

orthogonal axes, known as the principal components

(PCs), sorted in descending order according to their con-

tribution to the total variation of the original covariates.

It has been noted that the overdispersion or excess vari-

ance of the first principal component of a genome-wide

panel of markers can be used to detect evidence of any

substructure in a population. Moreover, one could test

for the overdispersion of other top-ranked PCs to detect

the presence of any additional significant axes of popula-

tion stratification. For analysis of GWAS, it has now

become fairly routine to use regression models to adjust

for significant principal components of genetic variation

and hence avoid possible confounding bias that could

arise resulting from differences in population structure

between the cases and the controls. Further, some recent

reports13,14 have proposed tight matching of the cases

and the controls based on the PS markers and then per-

forming conditional logistic regression analysis of the

resulting matched data so that the gene frequencies

between the cases and controls are compared only within

the homogeneous matched sets.

In this article, we demonstrate that PCA has a novel and

powerful role in the exploration of gene-gene interactions

in case-control studies. In particular, we show that PCA

can be used to remove the bias in the case-only and other

related methods resulting from PS in such a way that the

methods can still retain major power advantages over

standard logistic regression methods. We assume that

physically distant markers are in linkage equilibrium,

not in the whole population, but only within the under-

lying ethnic strata that could potentially be detected by

the principal components of PS markers. We consider a

parametric, principal component adjusted, case-only

analysis that assumes that genotype frequencies for puta-

tive susceptibility loci vary across the underlying ethnic

strata in a logistic-linear fashion in the directions of the

significant PCs. We also consider nonparametric methods

that do not require any modeling assumption for geno-

type frequencies but involve tightly matching subjects

in case-control and case-only studies based on the signif-

icant PCs so that subjects within a matched set can be

considered highly homogeneous in terms of their under-

lying ethnicity. For the analysis of different types of

matched data sets, we propose alternative conditional

likelihoods that can gain efficiency by utilizing genotype
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combinations associated with various ‘‘pseudo-controls’’

that can be generated under the conditional G-G indepen-

dence assumption. All of the methods are computation-

ally simple and can be scaled up for large-scale explora-

tion of interactions.

We study the performance of these methods in empirical

settings. We demonstrate how the proposed methods per-

form in the setting of Figure 1, where we noted severe bias

in the case-only type methods. Moreover, we conducted

extensive simulation studies imitating the population

substructure of the CGEMS study and with alternative

panels of PS markers to explore the type I error and power

of the proposed methods under a variety of scenarios. We

also conducted theoretical relative efficiency calculations

to demonstrate the potential sample size reduction that

can be achieved by these novel methods, compared with

standard logistic regression. These studies suggest that

the proposed methods indeed could be very robust and

powerful for exploration of G-G interactions in case-

control and case-only studies.
Material and Methods

Model and Assumptions
Suppose we are interested in testing for interaction between the

genotypes at two physically unlinked SNP loci, say, numerically

coded by G and H, on the risk of a binary disease outcome D,

with a population logistic regression model of the form

prðD ¼ 1 jG, HÞ ¼ LfaP þmðG, H; bÞg, (1)

where L(x) ¼ {1 þ exp(-x)}�1 denotes the logistic distribution func-

tion, P indexes the underlying ethnic subpopulation in which

a subject belongs, and m(d) is a known but arbitrary function

that specifies the odds ratio of the disease associated with the joint

genotype status (G, H) in terms of a set of parameters b. Model (1)

allows the population-specific intercept parameter aP to account

for potential heterogeneity in disease risk between underlying

subpopulations. Model (1) also allows the joint log odds ratio

(log-relative-risk assuming rare disease) function m(G,H,b) to be

of a very general form, so that it can include many different kinds

of interaction models, including standard multiplicative and addi-

tive forms. We assume that the two loci are in linkage equilibrium

in each subpopulation P but that they can be in LD in the overall

population if the genotype frequencies for both the loci vary

across the underlying subpopulations. Mathematically speaking,

we simply assume that pr(G, H j P) ¼ pr(G j P)pr(H j P). We note

that the assumption of gene-gene independence within ethnically

homogenous subpopulations is much weaker than the same

assumption for the whole population.

Parametric Method
As a parametric method, we consider a case-only analysis of asso-

ciation between G and H after adjustments for principal compo-

nents of PS markers via a trichotomous logistic regression model

of the form

log
PrðG ¼ g jH ¼ h, P, D ¼ 1Þ
PrðG ¼ 0 jH ¼ h, P, D ¼ 1Þ ¼ ag þ qghþ g

XK

k¼1

gkPCk: (2)
The Ameri
where g, h ¼ 0, 1, 2 correspond to the three ordered levels for SNP-

genotype data, a0¼0, PCk, k¼1, ., K denote a set of significant PCs

that capture directions of PS for the underlying population and gk,

k ¼ 1, ., K denote associated regression coefficients that measure

association between genotype frequencies and the PC directions.

We show in Appendix A that the parameter q in the model (2)

can be interpreted as an odds-ratio interaction coefficient under

a standard logistic regression model for disease risk of the form

logit prðD ¼ 1 jG, H, PÞ ¼ aP þ bGGþ bHH þ qG �H: (3)

Thus, model (2) can be used not only to perform a case-only

test for interaction, but also to obtain parameter estimates for

odds-ratio interaction coefficients. We refer to this method as

CO-ADJ. The standard unadjusted case-only method (CO) was

also implemented with model (2) without the adjustment for prin-

cipal components.
Nonparametric Methods Based on Genetic Matching
The parametric case-only method described above requires the

assumption that genotype frequencies at putative susceptibility

loci vary across the underlying subpopulations in a logistic-linear

fashion as a function of the underlying principal components.

To avoid potential bias from the misspecification of such models,

we also consider a number of nonparametric methods based on

genetic matching. Suppose a case-control study has recruited N

diseased and N healthy subjects with possibly heterogeneous

ethnic backgrounds. Our main idea here is to use genetic matching

algorithms that use a large panel of null genetic markers to find

groups of subjects in a study, each with a very similar ethnic back-

ground (P), so that the assumption of LE between unlinked genes is

reasonable within each such homogeneous group. We use a slightly

modified version of the recently proposed GEM algorithm13 for

matching pairs of subjects based on genetic distance constructed

from the major principal components of the PS markers. We

consider three matching strategies; two are applicable for case-

control studies and one for case-only studies. In case-control (CC)

matching, we match each case to the nearest control in terms of

genetic distance. In nearest-neighbor (NN) matching, we find pairs

of subjects who are genetically closest to each other, without regard

to their disease status. Thus, under NN matching, matched pairs

could be genetically closer than they are in CC matching. Finally,

if only cases are available in a study, then we consider case-only

(CO) matching that involves NN matching among pairs of cases.

In the following, we describe various conditional likelihoods

that could be used to analyze data with the different matching

strategies described above. Each conditional likelihood allows

matched pairs of subjects to be analyzed under the assumption of

LE or gene-gene independence between physically distant loci

after properly accounting for the case-control sampling and the

associated matching strategies. Each type of conditional likelihood

is also ‘‘model free’’ in the sense that it does not require any

modeling assumption about the distribution of allele frequencies

for the putative causal loci across the underlying subpopulations.
Case-Control Matching
Suppose there are N matched case-control pairs. For the i-th such

pair, let (Di0, Di1) denote the disease status and (Gi0, Hi0) and

(Gi1, Hi1) denote the genotype status at the pair of loci for the

control and case, respectively. Data for matched case-control pairs

can be analyzed with the widely used conditional logistic regres-

sion (CLR),15 with the associated likelihood given by
can Journal of Human Genetics 86, 331–342, March 12, 2010 333



LCC�CLR ¼
YN
i¼1

PrðDi1 ¼ 1,Di0 ¼ 0 jDi1 þDi0 ¼ 1,Gi1,Hi1,Gi0,Hi0Þ

¼
YN
i¼1

expfmðGi1,Hi1; bÞg
expfmðGi1,Hi1; bÞg þ expfmðGi0,Hi0; bÞg:

(4)

In (4), for each matched set i, the conditional likelihood is

formed based on the probability of the observed disease configura-

tion for the members of the matched set, conditional on their

joint genotype information at the two loci and the ascertainment

event that Di1 þ Di0 ¼ 1 by design. It is noteworthy that LCC–CLR is

free of the population-specific intercept parameters aP and there-

fore does not require any modeling assumption about possible

mechanisms of heterogeneity in disease risk between subpopula-

tions. Moreover, similar to standard prospective logistic regres-

sion, the likelihood in formula (4) is constructed based on pro-
LNN�HCL ¼
YN
i¼1

exp
�
ðDi1 þDi2Þa�P þDi1mðGi1,Hi1; bÞ þDi2mðGi2,Hi2; bÞ

�
P
jsj0

P
d1¼0,1

P
d2¼0,1

exp
�
ðd1 þ d2Þa�P þ d1m

�
Gij,Hi1; b

�
þ d2m

�
Gij0 ,Hi2; b

��, (6)
babilities that condition on all the genotype information in

a matched set and therefore is free of any assumption about the

joint genotype distribution in the underlying population. As

a result, this method cannot exploit the gene-gene independence

assumption when it is reasonable to do so.

For family-based case-control studies, a modification of the stan-

dard conditional logistic regression was proposed previously16 to

extract additional power for a gene-environment (G-E) interaction

test from the G-E independence assumption by conditioning on

‘‘sets’’ of observed genotypes within families instead of the indi-

vidual genotypes of the members. We consider applying the

same strategy here for mapping G-G interactions with a case-

control sample, where the subjects matched by PS markers serve

as a ‘‘family’’ with similar genetic background. For the i-th

matched pair of subjects, if we let Gi be the set of observed geno-

types at locus G without regard to any link with the case-control

status of the subjects, then the alternative ‘‘constrained condi-

tional likelihood’’ (CCL) can be defined as

LCC�CCL ¼
YN
i¼1

PrðDi1 ¼ 1,Di0 ¼ 0,Gi1,Gi0 jDi1 þDi0 ¼ 1,Gi,Hi1,Hi0Þ

¼
YN
i¼1

expfmðGi1,Hi1; bÞg
P1
j¼0

�
exp

�
m
�
Gij,Hi1; b

��
þ exp

�
m
�
Gij,Hi0; b

���,

(5)

where the main difference from the standard conditional likeli-

hood is that conditioning has been performed with respect to

the set genotype Gi as opposed to individual genotype (Gi1, Gi0).

As shown in the second line of the formula, under a rare-disease

approximation, the likelihood is equivalent to that for a standard

CLR with 1:3 matching, where the two pseudo-controls are created

by swapping the genotypes of the case and the control at one of

the loci; under the G-G independence assumption, such ‘‘pseudo’’

controls are as likely to appear in a matched set as the observed

subjects in the same set.
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Nearest-Neighbor Matching
For the nearest-neighbor matched pair analysis, let (Di1, Di2), (Gi1,

Gi2), and (Hi1, Hi2) denote the disease status, genotype at locus G,

and genotype at locus H for the two subjects in the i-th matched

pair. Unlike case-control matching, where, by design, there is

exactly one case and one control in a matched pair, under NN

matching there could be two cases, two controls, or one case

and one control within different matched pairs. We propose use

of the ‘‘hybrid conditional likelihood’’ (HCL)

LNN�HCL ¼
YN
i¼1

P�ðDi1,Di2,Gi1,Gi2 j Gi,Hi1,Hi2Þ,

where the notation P* corresponds to the probability distribution

under the original case-control design (before matching), in which

exactly N cases and N controls were sampled by design. With some

algebra (see Appendix B), LNN–HCL can be rewritten in the form
where aP*¼ aPþ k is a shifted intercept parameter that reflects that

under case-control design the sample is more enriched by cases

compared to the population. Similar to LCC–CCL, the derivation

of LNN–HCL exploits the ‘‘weak’’ assumption that unlinked loci

are independent within genetically homogeneous matched sets

in the underlying population. Unlike LCC–CCL and LCC–CLR,

however, it depends on the population-specific baseline disease

risk parameter a�P. We specify a�P based on regression modeling of

disease risk as a function of the major principal components,

a technique that is now commonly used for adjustment of con-

founding bias in unmatched case-control studies.12 An advantage

of such parametric modeling of the baseline risks in LNN–HCL is that

it allows borrowing some information across matched pairs that is

lost in LCC–CLR and LCC–CCL because of the additional conditioning

on the number of disease subjects in each matched set. Any effi-

ciency gain, however, comes with the risk of confounding bias

because of residual heterogeneity in disease risk that is not

captured by the regression approach. For studies of main effects,

the use of principal components in a regression model has often

been reported to be adequate for adjustment of confounding

bias. Later, we will explore this issue of bias versus efficiency for

studies of interaction through in-depth simulations.
Case-Case Matching
If only cases are available in a study, then we consider matching

pairs of cases by the NN method and analyzing the resulting

matched data with the ‘‘case-only constrained conditional likeli-

hood’’

LCO�CLR ¼
YN
i¼1

Pr
�
Gi1,Gi2 jDi1 ¼ 1, Di2 ¼ 1,Gi,Hi1,Hi2

�
:

The conditioning event in LCO–CLR is similar to that in LCC–CCL

and LNN–HCL except that it now includes (Di1¼ 1, Di2¼ 1) to reflect

the case-only design. The above likelihood can be simplified (see

Appendix C) as
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LCO�CLR ¼
YN
i¼1

expfmðGi1,Hi1; bÞgexpfmðGi2,Hi2; bÞg
expfmðGi1,Hi1; bÞgexpfmðGi2,Hi2; bÞg þ expfmðGi2,Hi1; bÞgexpfmðGi1,Hi2; bÞg: (7)
Note that, like LCLR and LCC–CCL, LCO–CLR does not involve the

population-specific risk parameter aP and hence is free of any

model assumption about risk heterogeneity in the underlying

subpopulations.
Asymptotic Relative Efficiency
When there is no bias because of PS, we analytically evaluated the

asymptotic relative efficiencies (AREs) of the different methods as

a ratio of the corresponding asymptotic variances, obtained from

the inverse information matrices, for the interaction parameter

of interest. The ARE is defined as the ratio of the noncentrality

parameters of two tests and can be interpreted as the inverse ratio

of sample sizes that give the same power for the two tests at

any fixed significance level. For example, if method A has an

ARE of two with respect to method B, it can be concluded that

method A gives comparable power to method B with only half

the sample size.
Simulation Scheme
We evaluated the performance of the proposed methods by using

simulations that mimic the population stratification structure

observed in the CGEMS study. We used two mutually uncorrelated

panels (low LD within and between panels) of 12,821 and 7,017

SNPs, respectively, that have been previously shown to be

adequate PS markers17 for the CGEMS study. We defined a total

of up to 3 3 3 3 3 3 3 ¼ 81 population strata based on the tertiles

of the four most significant principal components of the 12K

panel. The stratum-specific allele frequencies for the PS markers,

for both the original 12K panel and the independent 7K panel,

were recorded from the CGEMS study and were used to generate

the genotypes for the PS markers in the simulation studies.

In our simulation, we assumed that each of the 81 strata is

equally likely in the underlying population and that within each

such stratum, the PS markers are independent of each other, the

disease end-point, and the putative causal loci. For the general

population, we assumed a logistic regression model of the form

logit½prðD ¼ 1 jG1, G2, SÞ� ¼ aS þ b1G1 þ b2G2 þ qG1
�G2, (8)

where S indexes the underlying population strata and G1 and G2

denote the genotype status for each of the two putative causal

loci. We assumed that the alleles within each locus act on the

risk of the disease in an additive fashion (on the logistic scale)

and thus coded each of G1 and G2 as the number of minor alleles

carried by an individual in the respective locus. The stratum-

specific baseline disease risk aS and common allele frequency pS

of the two causal SNPs were preassigned in different ways to

generate for the following three scenarios.

No stratification: Both pS and aS were held constant across strata.

In this setting, no bias is expected, resulting from either confound-

ing induced by risk stratification or allele frequency stratification.

Uncorrelated stratification: pS varied across the 81 strata in such

a way that it was monotonically increasing, but in a highly

nonlinear fashion, along the tertiles of each PC direction. aS varied

randomly independent of PC directions (for details, see Table S1
The Ameri
available online). To give an idea about the extent of stratification

generated, the Fst of the causal SNPs was 0.024 and the overall Fst

of the 12K PS SNPs was 0.020. In this setting, we expect potential

bias could arise due to gene-gene dependence but not due to con-

founding, because the directions of variations for allele frequen-

cies and disease risks were orthogonal.

Correlated stratification: Both aS and pS varied across the 81 strata

in such a way that they were both monotonically increasing along

the tertiles of each PC direction (see Table S1). In this setting,

bias could arise because of both confounding and gene-gene

dependence.

In our simulations, we generated the underlying stratum indica-

tors (S), the genotypes for PS markers (M), and the genotypes for

the putative susceptibility loci (G) conditional on the case-control

status of the subjects in a manner that was consistent with the

population models described above (see Appendix D for details).

During the analysis of each simulated data set, we assumed that

only M was observed, but not S.

We analyzed each simulated data set with two existing methods:

(1) the standard case-only (CO) method without adjustment for

PCs and (2) the standard prospective logistic (PL) regression

method. The CO method2,3 assumes gene-gene independence in

the entire population and hence in the controls for a rare disease,

whereas the PL method allows the joint distribution of the geno-

types to remain completely unconstrained.18,19 In addition, each

simulated data set was analyzed with the standard CC-CLR

method and with the proposed methods CO-ADJ, CC-CCL, and

NN-HCL.
Results

Analysis of CGEMS Study

We illustrate an application of the proposed methods by

using the first-stage data from the CGEMS multistage

GWAS of breast cancer.8,9 The study consisted of 1042

cases and 1045 controls, all white women, sampled from

the Nurses’ Health Cohort Study. To account for PS, we

used a panel of 12,821 SNPs (also used in our simulations)

that have been shown previously17 to be informative for PS

detection in the CGEMS study. The GEM algorithm

(without outlier removal steps) identified four significant

axes of genetic variation (see Figure 2). These principal

components were used to construct genetic distances and

to obtain the case-control and nearest-neighbor matches,

required for the methods CC-CLR, CC-CCL, and NN-

HCL. Figure 1 shows q-q plots of the interaction p values

between rs2322659 in LCT, a gene in Chr 2 known to be

under the effect of PS in populations of European descent,

and 472,786 SNPs from the remaining 21 autosomes, via

the two standard methods PL and CO as well as the

proposed methods. The CO method, which assumes G-G

independence for the entire population, showed a large
can Journal of Human Genetics 86, 331–342, March 12, 2010 335



Figure 2. Principal Components in CGEMS Breast Cancer Data
Pairwise scatter plots of the first four principal axes of genetic variation (labeled PC1, PC2, PC3, and PC4) in the CGEMS breast cancer
data.
shift (inflation factor ¼ 1.39) from the diagonal line that

corresponds to the distribution of p values expected by

chance. The corresponding plots for PL and CC-CLR,

both of which allow for unconstrained joint genotype

distribution, were well aligned to the diagonal line, sug-

gesting that these methods were not susceptible to any

large-scale inflation of type I error resulting from PS bias.

CC-CCL and NN-HCL, both of which make use of the

G-G independence assumption within matched sets, also

showed similar behavior, indicating that these methods

were also robust to the PS bias that is seen for the CO

method. The parametric CO-ADJ method, which adjusted

for the four significant PCs, showed slight inflation of type

I error near the tail. However, the overall inflation factor

was close to 1 and it is possible that the subtle inflation

in the tail was due to random fluctuations.

Asymptotic Relative Efficiency

Figure 3 shows the theoretical AREs of the different

methods for the odds-ratio interaction (q) between a pair

of susceptibility SNPs as a function of the minor allele

frequencies (MAFs) and the main effect odds ratios for

those SNPs. Here, the widely used PL method was used

as a common reference for all of the ARE evaluations. We
336 The American Journal of Human Genetics 86, 331–342, March 1
observe that if there were no bias due to PS, then the CO

method would be the most powerful of all the methods;

its ARE is always above 2, indicating that this method

could reach the same or higher power compared with

prospective logistic regression with only half the sample

size. The strategy of 1:1 case-control matching and stan-

dard CLR analysis of the resulting matched data was the

least powerful of all the methods considered. The method,

however, lost only modest power compared with standard

prospective logistic regression (PL) analysis, indicating that

the loss of efficiency because of individual matching is

generally not large.

We observe that although the constrained methods

CC-CCL and NN-HCL suffer significant loss of power

compared with the CO method that relies on a much

stronger gene-gene independence assumption, they are

substantially more powerful than the completely ‘‘uncon-

strained’’ PL and CC-CLR methods; the ARE always

remained 1.5 or higher, indicating that these methods

can achieve the same power as the unconstrained methods

with a 50% smaller sample size. The NN-HCL method was

able to gain modest power over CC-CCL by allowing

for comparisons between matched pairs. The CO-CLR

method, although less efficient than the other proposed
Figure 3. Asymptotic Relative Efficiency
of Alternative Methods in the Absence
of Population Stratification
All AREs are evaluated in reference to stan-
dard prospective logistic regression (PL).
The AREs are shown for PL (black line),
CO (light blue line), CC-CLR (dark blue
line), CC-CCL (orange line), NN-HCL
(green line), and CO-CLR (red line). Left
panel plots ARE as a function of the
common main effect (b1 ¼ b2 ¼ b) of the
two causal SNPs (fixing the common
MAF at 0.3). Right panel plots ARE as
a function of the common MAF (fixing
the common main effect odds ratio at 1.4).
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Table 1. Type I Error

PL CO CO-ADJ CC-CLR CC-CCL NN-HCL

PCA with 12,821 SNPs

No stratification 0.013 0.010 0.012 0.011 0.008 0.010

Uncorrelated
stratification

0.011 0.095 0.018 0.010 0.013 0.011

Correlated
stratification

0.012 0.112 0.017 0.010 0.013 0.009

PCA with 7,017 SNPs

No stratification 0.010 0.009 0.010 0.010 0.009 0.010

Uncorrelated
stratification

0.010 0.095 0.060 0.010 0.020 0.017

Correlated
stratification

0.008 0.109 0.052 0.008 0.021 0.013

Simulated type I error at a nominal significance level of 0.01. Three scenarios
are considered depending on the nature of stratification of disease risk and
allele frequencies and their correlation. Two sets of PS markers are considered:
PCA and matching are based on the original 12K SNPs that were used to
generate stratification, and PCA and matching are based on a 7K SNP panel
uncorrelated with the original 12K panel. The five methods compared are
the standard prospective logistic regression method (PL), the standard case-
only method (CO), proposed adjusted case-only method (CO-ADJ), standard
conditional logistic regression (CC-CLR), proposed constrained conditional
likelihood (CC-CCL), and the proposed hybrid conditional likelihood
(NN-HCL).

Figure 4. q-q Plot for Interactions among Simulated Null SNPs
q-q plot of interaction p values for 10,000 pairs of simulated null
SNPs where 96% of the pairs have constant allele frequencies
across strata and 1% of the pairs have SNP frequencies covarying
along each of the four possible axes of variation. The disease risk
also varies along the first axis. See Figure 1 legend for details about
the methods compared.
methods, provided modest efficiency gain over the uncon-

strained methods PL and CC-CLR.

Simulation Studies

Table 1 shows the type I error of different methods at a ¼
0.01 for detecting odds ratio interaction between a given

pair of null SNPs over 10,000 simulated data sets, each

consisting of 500 cases and 500 controls. Under ‘‘no strat-

ification,’’ all of the methods produced type I error close

to the nominal significance level. Under ‘‘uncorrelated’’

population stratification, the CO method produced severe

inflation of type I error because of the violation of the

underlying gene-gene independence constraint. The para-

metric CO-ADJ method also substantially reduced the

bias of CO but had substantial inflation of type I error,

especially when the 7K panel of markers was used. The

proposed matching-based methods, CC-CCL and NN-

HCL, reduced the bias dramatically producing type I error

much closer to the nominal significance level. When

matching was performed based on the 7K panel of

markers, the type I errors of the methods increased because

of imperfect matching, but still remained much lower

than those of the CO and CO-ADJ methods. Moreover,

in this setting, the NN-HCL method produced substan-

tially smaller type I error than that of CC-CCL. When we

simulated ‘‘correlated stratification,’’ we observed a rela-

tively subtle effect of ‘‘confounding’’ bias in all the

methods.

In Figure 4, we show the q-q plots for 10,000 pairs of

null SNPs where different pairs are assumed to be under
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the effect of different types of stratification. Overall, we

assumed that 96% of the SNP pairs were not under any

population stratification. Further, we assumed that out of

the remaining 4% pairs, an equal number of pairs (i.e.,

1%) had randomly generated allele frequencies that were

increasing along one of the four principal axes of variation.

Moreover, we specified the disease risk to increase along

the tertiles of the first axis. This scenario is more realistic

for large-scale exploration of gene-gene interactions

where, for a large number of loci, the effect of population

stratification may be negligible and different subsets of

the remaining SNPs may have strong stratification along

different axes of variation, such as the north-south and

east-west gradients for a white population with a European

origin.

Interestingly, we observe that even with a small fraction

of SNPs under nonnegligible population stratification, the

CO method produced a serious distortion of the q-q plot

from its expected null distribution. The CO-ADJ method

also showed significant inflation toward its tail, presum-

ably for those pairs of markers for which the allele frequen-

cies increased in a nonlinear fashion (in the logistic scale)

along the tertiles. The other proposed methods, even with

imperfect matching based on the 7K panel of markers,

produced q-q plots that indicated similar expected and

observed numbers of false discoveries across a wide range

of significance levels.

In Figure 5, we show the simulation-based power curves

for detecting the odds ratio interactions between a pair of

susceptibility SNPs at a significance level of a ¼ 0.01 over
can Journal of Human Genetics 86, 331–342, March 12, 2010 337



Figure 5. Simulation-Based Estimate of Power
Simulation-based estimates of power for detecting interaction between a pair of susceptibility SNPs with 500 cases and 500 controls at
a significance level of 0.01. Three scenarios are considered depending on how the allele frequencies of the causal SNPs and the disease
risk vary along the underlying strata. The same panel of 12K PS markers are used for both simulation and data analysis. See Figure 1
legend for details about the methods compared.
1000 simulated data sets, each consisting of 500 cases and

500 controls. These results correspond well with the theo-

retical ARE results shown in Figure 3. In particular, both

the CC-CCL and NN-HCL methods showed a significant

power advantage over the unconstrained PL and CC-CLR

methods, irrespective of whether or not the pair of SNPs

under study were under the effect of population stratifica-

tion. Unlike the theoretical ARE plot, however, here we

observed that CC-CCL can be slightly more powerful

than NN-HCL in some instances. The power of CO-ADJ

was considerably lower than CO, possibly because of

adjustment for a large number of significant PCs that

were often detected on different simulated data sets. Over-

all, the CO and CO-ADJ methods clearly had the highest

power among all the methods, but as seen from Table 1

and Figures 1 and 4, they can also produce an unacceptably

high number of false positives in the presence of complex

population stratification.
Discussion

In this article, we have proposed several alternative

methods for exploring gene-gene interactions between

unlinked regions in case-control studies. These methods

can gain major power by exploiting gene-gene indepen-

dence in the underlying population in a robust manner

so that false positives can be avoided in the presence of

long-range linkage disequilibrium in the genome that

could arise because of the presence of population stratifica-

tion. The key principle is to assume gene-gene indepen-

dence conditional on population substructure that could

be detected based on panels of population stratification

markers. We used data from the CGEMS genome-wide

association study and closely related simulations to

demonstrate some advantages of the proposed methods
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compared with some widely used existing methods that

either are completely ‘‘unconstrained’’ with regard to the

joint genotype distribution or invoke the very strong

assumption of gene-gene independence in the entire

population.

We consider both parametric and nonparametric

methods for exploiting the conditional gene-gene inde-

pendence assumption. Our simulation results suggested

that although the parametric case-only method can be

substantially more powerful than the nonparametric

conditional-likelihood-based methods, it can potentially

suffer from significant residual bias when the underlying

assumption about the parametric relationship between

genotype frequencies for certain putative susceptibility

loci and the principal components of PS directions is

not correct. In the application involving CGEMS study,

however, both parametric and nonparametric methods

performed very well in removing the excess of low p

values that were seen for the unadjusted case-only

method.

The control of type I error in the proposed matching-

based methods depends on how well subjects can be

matched based on their genetic backgrounds, so that the

chance of any residual population stratification within

matched sets can be minimized. Both the choice of the

PS marker panel and that of the matching algorithm are

important in this regard. We observe that in our simulation

study, where the principal components for a panel of 12K

markers in the CGEMS study were used to generate the

population stratification structure, the type I error of these

methods achieved exact nominal level when we the used

the same 12K markers for matching the subjects in the

simulated data sets. The results were encouraging because

even with the original 12K set of markers, matching could

not be expected to be perfect because of sampling varia-

tion. When an independent panel of 7K markers was
2, 2010



used, however, we observed an inflation in the type I error

for all of the proposed methods. In this setting, the NN-

HCL method produced a substantially smaller bias than

did CC-CCL, indicating that the NN method produced

better matching of subjects in terms of their genetic back-

ground than the did case-control matching. Although

arguably the amount of stratification we simulated in the

setting of Table 1 involving a total of 81 distinct strata is

fairly extreme, these simulations demonstrate that a rich

panel of informative PS markers and efficient matching

algorithms are important for the application of the pro-

posed methods. Apart from better PCA-based matching

algorithms, other clustering approaches such as Spectral

GEM20 could also be explored in the future.

In this article, we also proposed a conditional likelihood

for robust gene-gene interaction analysis with only a sam-

ple of cases. Our ARE calculations, however, demonstrated

that if both cases and well-matched controls are available

in a study, then one could be much more efficient

analyzing both the cases and the controls with either

the CC-CCL or NN-HCL methods compared with a case-

only analysis with the CO-CLR method. The proposed

CO-CLR method can be valuable when only a sample of

cases is available in a study or even if a sample of controls

is available, but it is suspected that it may not be from

the same source population from which the cases were

drawn.

An advantage of the NN-HCL and CC-CCL methods

is that they allow estimation of all of the parameters,

including but not limited to interactions, that are required

to describe the full joint effect of a pair of loci on the risk

of a disease. Consequently, these methods can be used

not only to test for certain forms of interactions but also

to perform various types of joint and conditional tests of

associations that previous studies have suggested in order

to search for novel susceptibility loci in the presence of

potential interactions.21–25 In addition, availability of the

estimates for the full joint effect leads to a better interpre-

tation of any significant interaction finding and eventual

incorporation of the results for risk modeling. In principle,

the parametric case-only method we considered can also

be extended for estimation of all of the parameters of a

logistic model via a general constrained maximum likeli-

hood framework26 that can incorporate data from both

cases and controls.

So far we have assumed 1:1 matching, but the principal

components can also be used for more general m:n match-

ing, and the proposed conditional likelihoods can be

modified to account for such grouped matching. We

expect that as matching gets cruder, both the precision

and PS bias of CC-CCL and NN-HCL will increase and

eventually will achieve those of the CO methods, because

in limit, the gene-gene independence assumption within

matched sets will be the same as that for the entire popu-

lation. Thus, although a cruder matching can be consid-

ered for increasing efficiency of the methods, one needs

to ensure that a certain level of homogeneity is achieved
The Ameri
within each matched set to avoid a potential increase

in bias.

The proposed methods can also be generalized for

studying interactions involving more than two genetic

loci. One can partition multiple loci into independent

‘‘bins’’ and then use suitable conditional likelihoods

to generate pseudo-controls by swapping genes, held

together within each bin but independently between

bins, among subjects in matched sets. The gain in effi-

ciency from the gene-gene independence assumption can

be expected to increase with the order of the interactions

because, as the number of loci increases, the number of

subjects in cells of crossing genotypes decreases and empir-

ical estimation of the unconstrained multivariate genotype

distribution becomes more imprecise. The strategy could

be applied to gain efficiency in a variety of data mining

methods27–29 that have been proposed for exploring

gene-gene interaction in high dimensions.

The proposed methods have applications for gene-envi-

ronment interaction analysis, where the use of the gene-

environment independence assumption and application

of the case-only type methods have also been advocated

to achieve gain in power. The assumption of G-E indepen-

dence can be violated in the presence of population strati-

fication for many environmental exposures, such as

height, body mass index, diet, and sunlight exposures,

the distribution of which can have geographic variation

in directions that are also related to genetic variations. In

such settings, the proposed methods can provide powerful

tools for exploring gene-environment interactions by

exploiting a ‘‘weak’’ gene-environment independence

assumption that is required to hold only within homoge-

nous groups of subjects with similar population back-

grounds.

The methods proposed here as well as other related

methods for G-G and G-E interaction studies have been

implemented in a user-friendly R package CaseControl.

Genetics.
Appendix A

Derivation of Parametric Model for Case-Only

Analysis

Suppose, we assume that the variation in genotype fre-

quencies for putative susceptibility loci G across the under-

lying subpopulations (P) can be described by a trichoto-

mous logistic model of the form

log
PrðG ¼ g jPÞ
PrðG ¼ 0 jPÞ ¼ ag þ g

XK

k¼1

gkPCk, (9)

where g ¼ 0, 1, 2 correspond to the three ordered levels of

SNP-genotype data, a0 ¼ 0, PCk, k ¼ 1, ., K denote a set of

significant PCs that capture directions of PS for the under-

lying population, and gk, k ¼ 1, ., K denote associated

regression coefficients that measure association between
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genotype frequencies and the PC directions. Assuming rare

disease, conditional independence of G and H given P, and

models (9) and (3), it is easy to show that

log
PrðG ¼ g jH ¼ h,P,D ¼ 1Þ
PrðG ¼ 0 jH ¼ h,P,D ¼ 1Þ ¼ ag þ qghþ g

XK

k¼1

gkPCk,

(10)

the proposed parametric model for case-only analysis.
Appendix B

Derivation of the Hybrid Conditional Likelihood

The hybrid likelihood for a matched pair of subjects in

stratum S ¼ s can be written as

P�ðD1,D2,G1,G2 j G,H1,H2,S ¼ sÞ

¼ P�ðD1,D2,G1,G2 jH1,H2,S ¼ sÞ1ðG1,G2Þ˛GP
d1,d2

P
ðg1,g2Þ

P�ðd1,d2,g1,g2 jH1,H2,S ¼ sÞ1ðg1,g2Þ˛G

¼

Q2
j¼1

P�
�
Dj,Gj jHj,S ¼ s

�
1Gj˛G

P
ðd1,d2Þ

P
ðg1,g2Þ

Q2
j¼1

P�
�

dj,gj jHj,S ¼ s
	

1gj˛G

:

Now, under the assumption of independence of G and H

given S¼ s, following Lemma 2 of the previous report,26 we

can write

P�
�
Dj,Gj jHj,S

�
¼

mDj
Pr
�
Dj jGj,Hj,S ¼ s

�
pr
�
Gj j S ¼ s

�
P
dj

P
gj

mdj Pr
�

dj j gj,Hj,S ¼ s
	

pr
�

gj j S ¼ s
	

(11)

where mD¼ (nD/N)/Pr(D) for D¼ 0,1 are constant terms that

denote the rate at which the cases and controls have been

sampled from the respective populations. In formula (11),

P*(D, G j H, S) can be interpreted as the prospective proba-

bility of observing D and G given H and S under a popula-

tion-based case-control design that sample cases and

controls with selection probabilities proportional to m1

and m0, respectively. By noting that under the assumption

of rare disease, we can write

Pr
�
Dj jGj, Hj, S ¼ s

�
zexp

�
Dj
� �as þm

�
Gj, Hj; b

���
and that under the assumption of homogeneity of subjects

within strata we have

PrðG1 ¼ g1 j S ¼ sÞ3 PrðG2 ¼ g2 j S ¼ sÞ ¼ PrðG1 ¼ g2 j S
¼ sÞ3 PrðG2 ¼ g1 j S ¼ sÞ,

the formula for the hybrid conditional likelihood can

be derived in the form of Equation (6), with k ¼ log(m1/m0)

and

a�P ¼ aP þ log
m1

m0

:
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Appendix C

Derivation of the Case-Only Conditional Likelihood

With notation similar to that in Appendix A, LCO–CLR can

be simplified as

PrðG1,G2 j G,H1,H2,D1 ¼ 1,D2 ¼ 1,S ¼ sÞ

¼ PrðD1 ¼ 1,D2 ¼ 1,G1,G2 jH1,H2,S ¼ sÞ1ðG1,G2Þ˛GP
ðg1,g2Þ

PrðD1 ¼ 1,D2 ¼ 1,g1,g2 jH1,H2Þ1ðg1,g2Þ˛G

¼

Q2
j¼1

Pr
�
Dj ¼ 1 jGj,Hj,S ¼ s

�
Pr
�
Gj j S ¼ s

�
1Gj˛G

P
ðg1,g2Þ

Q2
j¼1

Pr
�

Dj ¼ 1 j gj,Hj,S ¼ s
	

Pr
�

Gj ¼ gj j S ¼ s
	

1gj˛G

:

The required expression follows by using the approxima-

tion Pr(Dj ¼ 1jGj, Hj, S ¼ s) zexp [(as þ m(Gj, Hj;b)] and

noting that the terms involving as cancel out. In particular,

when m(G, H;b) is an additive linear function of the form

b1G þ b2H þ qGH, the terms involving the main effects

also cancel out, giving the one-parameter CLR likelihood

LCO�CLR ¼
expfq ðG1H1 þ G2H2Þg

expfq ðG1H1 þ G2H2Þg þ expfq ðG1H2 þ G2H1Þg
:

Thus LCO–CLR simply captures the correlation of (G,H)

within matched case-pairs.
Appendix D

Simulation of a Case-Control Sample

We jointly generated S and G for the cases and controls

from two separate multinomial distributions. The multino-

mial probabilities for the controls were specified according

to the population model described in the ‘‘Simulation

Scheme’’ section and those for the cases were obtained by

multiplication of the multinomial probabilities of the

controls by the odds of the disease associated with S and

G, as specified by the assumed logistic model. Specifically,

for each control, the triplet (G1, G2, S) of the two putative

functional SNP genotypes and the unknown stratum

membership (S) were simulated under the rare disease

assumption with the formula:

PðG1, G2, S jD ¼ 0Þ ¼ PðG1, G2, SÞ ¼ PðSÞ PðG1, G2 j SÞ
¼ ð1=LÞ PðG1 j SÞ PðG2 j SÞ,

where we have assumed that all L strata are equally likely

and within each stratum the two SNPs are in linkage equi-

librium. We obtain P(G1 j S ¼ s) and P(G2 j S ¼ s) assuming

Hardy-Weinberg Equilibrium (HWE) with a MAF pS as pre-

specified for that stratum.

For each case, the triplet (G1, G2, S) was simulated with

the formula:
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PðG1,G2,S jD ¼ 1Þ ¼ ORðD jG1,G2,SÞ PðG1,G2,S jD ¼ 0Þ
P2

g1¼0

P2
g2¼0

P81

s¼1

ORðD j g1,g2,sÞ Pðg1,g2,s jD ¼ 0Þ

¼ expfaS þ b1G1 þ b2G2 þ qG1
�G2g PðG1,G2,S jD ¼ 0Þ

P2
g1¼0

P2
g2¼0

P81

s¼1

expfas þ b1G1 þ b2G2 þ qG1
� G2g Pðg1,g2,s jD ¼ 0Þ

,

where as is the prespecified stratum baseline disease

risk.

We assumed that the PS markers have no relationship

with the disease, conditional on the population stratum.

Hence, for each subject, given the simulated stratum

number S, the genotypes of the PS marker panel were simu-

lated from independent multinomial distributions

assuming HWE with MAFs as estimated from the CGEMS

data for that stratum. Once all the PS markers were simu-

lated for all the 1000 subjects, the significant principal

components (z1, z2.zk) were determined. The genetic

distance matrix was constructed and subjects were

matched via CC and NN matching strategies. Let bS denote

the matched set to which a subject is assigned. The simu-

lated vector ðD,G1,G2,bS,z1,.,zkÞ for each subject was

then used for computing the statistics.

Supplemental Data

Supplemental Data include one table and can be found with this

article online at http://www.cell.com/AJHG.
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